

Zahlentheorie I (Algebraische Zahlentheorie), WiSe 22/23 Blatt 6

Aufgabe 1 (5 Punkte):

Weisen Sie nach, dass der Unterring

$$\mathbb{Z}[2^{-1}] = \left\{ \frac{a}{2^n} \mid a \in \mathbb{Z}, n \ge 0 \right\} \subseteq \mathbb{Q}$$

ein Dedekindring ist.

Aufgabe 2 (5 Punkte):

Seien \mathfrak{a} und \mathfrak{b} zwei nicht-triviale Ideale von einem Dedekindring R mit Primidealzerlegungen $\mathfrak{a} = \mathfrak{p}_1^{\nu_1} \cdot \ldots \cdot \mathfrak{p}_r^{\nu_r}$ und $\mathfrak{b} = \mathfrak{p}_1^{\omega_1} \cdot \ldots \cdot \mathfrak{p}_r^{\omega_r}$. Wie sehen dann die Primfaktorzerlegungen von $\mathfrak{a} + \mathfrak{b}$, $\mathfrak{a} \cap \mathfrak{b}$ und $\mathfrak{a} \cdot \mathfrak{b}$ aus?

Aufgabe 3 (5 Punkte):

Sei R ein Ring. Zeigen Sie, dass folgende Bedingungen äquivalent sind:

(i) R ist noethersch, d.h. es gibt keine unendliche, echt aufsteigende Kette

$$\mathfrak{a}_0 \subsetneq \mathfrak{a}_1 \subsetneq \mathfrak{a}_2 \subsetneq \dots$$

von Idealen in R.

- (ii) Jedes Ideal von R ist endlich erzeugt.
- (iii) Jede nichtleere Menge von Idealen von R besitzt ein maximales Element bzgl. Inklusion.

Aufgabe 4 (5 Punkte):

Sei R ein noetherscher Ring. Wir wollen zeigen, dass dann auch der Polynomring $R[x_1, \ldots, x_n]$ noethersch ist.

- (i) Reduzieren Sie die Aussage auf den Fall n=1.
- (ii) Sei I ein Ideal von R[x] und sei f_0 ein Element minimalen Grades in I. Ist $I = (f_0)$, so sind wir fertig. Ist $I \neq (f_0)$, so wählen wir ein Element f_1 minimalen Grades in $I \setminus (f_0)$. Setzen wir dies fort, so erhalten wir also eine Folge von Polynomen $f_n \in I \setminus (f_0, \ldots, f_{n-1})$ mit minimalem Grad. Sei nun L_n der Leitkoeffizient des Polynomes f_n . Begründen Sie, dass das Ideal (l_0, l_1, l_2, \ldots) von l_0, \ldots, l_m erzeugt wird für ein $m \in \mathbb{N}$.
- (iii) Nehmen Sie an, dass I nicht von f_0, \ldots, f_m erzeugt wird und finden Sie einen Widerspruch.